
The Effect of Varibale Selection Approaches
on MSE of IPW ATE Estimator

Prelude

This document presents the final project completed collaboratively with fellow students as part
of PUBH 7485: Methods in Causal Inference at the University of Minnesota School of Public
Health in the Fall of 2023, a requirement in my MS Biostatistics Curriculum.

All relevant work files, including the .qmd file for document generation, are accessible in my
GitHub repository. The repository contains : - code for making simulated data set - code
for performing a causal inference analysis on one draw of said data set - code for storing all
data that we need for the study of simulation results - scripts to interface with the computing
cluster - final report reproducible document

This study is our first collective experience in research of statistical methods. We all were
intrigued by the idea of finding a ‘go-to’ method for selecting variables to conduct a causal
inference analysis in our careers beyond graduate school. We concluded that outcome adaptive
LASSO variable selection is the best way to select variable for regression adjustment in the
context of causal inference.

This document serves as a practical example of the final reports I can produce in my role as a
data scientist or statistician. For more samples and a comprehensive view of my work, please
explore my portfolio, showcasing various reports, studies, dashboards, and other analytical
files.

Introduction

The average treatment effect (ATE) serves as a crucial measure for evaluating the causal im-
pact of a specific treatment or intervention on an outcome variable. However, randomized
experiments are typically necessary to establish a control group closely resembling the inter-
vention group, ensuring accurate ATE estimation. Despite the widespread availability of data
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today and the relatively lower costs compared to randomized trials, there is a growing inter-
est in leveraging observational (or non-randomized) studies for estimating treatment effects,
especially in social sciences, epidemiology, and certain clinical studies.

Inverse probability weighting, a propensity score-based technique, proves valuable for address-
ing imbalance in study groups within observational studies. Achieving an unbiased estimator,
under the assumption of “no unmeasured confoundings,” becomes a challenge in constructing
a propensity score model. Real-world observational studies often contains substantial sample
sizes and a high dimension of potential covariates, exemplified by studies such as Terzic et al.
(2021) and Butler et al. (2023), which involve nearly 5,000 samples with hundreds of variables.
To enhance the relevance of the study to real-world research, we will initiate the variation of
our sample size, starting from 1500 with 50 covariates.

In the context of high-dimensional datasets, variable selection using machine-learning ap-
proaches has become an intriguing topic. In articles such as Tang et al. (2023) and Lu et
al. (2018), the authors delve into variable selection for causal inference under ultra-high di-
mensionality, employing random forest approaches to build the model. This project aims
to evaluate the performance of each variable selection method across diverse simulated sce-
narios. Taking advantage of knowing the truth, we can compare variable selection methods,
contributing to a better understanding of these techniques in real-world applications.

Methods

Simulation Design

Covariates

We will simulate potential 𝑚 covariates X = (𝑋1, ..., 𝑋𝑚) from a multivariate normal distribu-
tion 𝑁(𝜇, Σ), where 𝜇 = 0. The correlation matrix Σ will be generated using the rcorrmatrix
function from the clusterGeneration package. To enhance computational efficiency, the co-
variates will be simulated in units of 50 columns each. In other words, when considering a
scenario with 150 covariates, we will first generate three independent subsets Z1, Z2, and Z3,
where each subset Z will consist of 50 correlated covariates. Subsequently, we will construct
X as (Z1, Z2, Z3).

Treatment Assignment and Outcome Models

Selecting True Covariates

To determine the covariates that will be included in the model, we will first establish the
number of true covariates denoted as 𝑠 that we wish to incorporate. A vector V = (𝑉1, ..., 𝑉𝑚)
will be generated, where we randomly select 𝑠 columns to serve as the underlying predictors
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for the model. Each element in the vector will function as an indicator, determining whether
the column from X will be utilized in the model or not.

Generating Coefficients for True Covariates

For the coefficients of the treatment assignment model, we will generate another vector
U = (𝑈1, ..., 𝑈𝑚) where 𝑈𝑖 ∼ Unif(-0.5, 0.5). We then define the vector of coeffi-
cients 𝛽𝐴 = (𝑉1𝑈1, ..., 𝑉𝑚𝑈𝑚)𝑇 . The final treatment assignment 𝐴 is determined by a
Bernoulii[expit(X𝛽𝐴)].
For the outcome model, we will also generate a vector R = (𝑅1, ..., 𝑅𝑚) where 𝑅𝑖 ∼ Unif(-1, 1).
Again, we then define a vector of coefficients 𝛽𝑌 = (𝑉1𝑅1, ..., 𝑉𝑚𝑅𝑚)𝑇 . Potential outcomes
𝑌 0 and 𝑌 1 and the observed outcome 𝑌 will be:

Potential outcomes:
𝑌 0 = X𝛽𝑌
𝑌 1 = 𝛼 + X𝛽𝑌

Obsevered outcome:
𝑌 = 𝐴 × 𝑌 1 + (1 − 𝐴) × 𝑌 0 + 𝜀
where 𝛼 is the average treatment effect and 𝜀 ∼ 𝑁(0, 𝛿)

The value of 𝛼 will be determined by solving 𝛼
𝑆𝐷(𝑌 0) = 0.5. 𝛿 will be chosen in a way that 𝑅2 ≈

0.5 when fitting linear regression with our outcome on true predictors. Across 100 iterations
in each simulating scenario, the same model will be used and only covariates X = (𝑋1, ..., 𝑋𝑚)
will be regenerate.

Simulation Schemes

1. Given 𝑚 and 𝑠, generate an indicator vector V = (𝑉1, ..., 𝑉𝑚) deciding ture covariates.
2. Simulate coefficient vector U = (𝑈1, ..., 𝑈𝑚) and R = (𝑅1, ..., 𝑅𝑚) to get 𝛽𝑌 .
 (i) Given 𝑛 and 𝑠, simulate covariate matrix X.
 (ii) Derive potential outcome 𝑌 0 = X𝛽𝑌 .
 (iii) Repeat (i) and (ii) to get 100 replications.
3. Solve ATE (𝛼) and residual (𝜀) based on the formulas above with all 𝑌 0 from all the 100 replications.
4. Derive 𝑌 1 = 𝛼 + X𝛽𝑌 and 𝑌 = 𝐴 × 𝑌 1 + (1 − 𝐴) × 𝑌 0 + 𝜀

Factors and Simulation Scenarios

1. Sample Size (𝑛): To evaluate the impact of sample size on the bias and MSE of ̂𝐴𝑇 𝐸,
considering that observational studies often involve very large sample sizes, we will vary
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the sample size. Specifically, we will investigate sizes of 1500, 3000, 4500, and 6000,
assessing the effect on MSE across different sample sizes.

2. Number of Potential Covariates (𝑚): A crucial aspect of our investigation involves com-
paring the performance of variable selection methods with the manual selection of co-
variates based on expertise and experience, simulating real-world research settings. Our
goal is to determine if any selection method consistently outperforms others. Given that
observational studies often deal with extensive datasets, we will explore three scenarios
with varying numbers of covariates: 50, 100, and 150. Despite simulating 50 covariates
in a unit for computational efficiency, this approach aligns with the complexities of real-
world situations where covariates are inherently intricate, featuring a mix of correlated
and independent variables.

3. True Covariates (𝑠): We will vary the number of true covariates from 10, 20, to 30. The
objective is to examine the impact on MSE as the true model becomes more complex
and to assess each variable selection method’s efficacy in correctly identifying relevant
covariates.

In total, the study contains 36 distinct simulation scenarios, each replicated 100 times. These
scenarios include variations in sample size, the number of potential covariates, and the number
of true covariates. This comprehensive approach allows us to evaluate the performance of
variable selection methods under diverse conditions, providing insights into their robustness
and effectiveness in practical research settings.

Variable Selection Methods

The objective of this project is to assess the impact on MSE of the IPW ATE estimator
when employing different variable selection approaches in modeling the propensity score. The
selected methods for modeling the propensity score include Forward Selection, Lasso, Adaptive
Lasso, and Experience-based selection. To establish benchmarks for both the best-case and
worst-case scenarios, the Oracle method (constructing the propensity score model based on
the true covariates) and the t-test for estimating ATE will also be incorporated.

Subset Selection - Forward Stepwise Selection

One advantage of forward selection is that it starts with smaller models. Also, this procedure
is less susceptible to collinearity, as discussed by Chowdhury and Turin (2020).
1. Let 𝑀0 denote the null model, which contains no predictors.
2. For 𝑘 = 0, ..., 𝑝 − 1:
 (a) consider all 𝑝 − 𝑘 models that add just one new variable to 𝑀𝑘
 (b) choose the best (smallest deviance) among these 𝑝 − 𝑘 models and call it 𝑀𝑘+1
3. Select a single best model from 𝑀0, 𝑀1, ..., 𝑀𝑝 using 𝐴𝐼𝐶.
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Shrinkage - Lasso

LASSO regression, recognized as L1 regularization, is a popular technique used in statistical
modeling and machine learning for variable selection and modeling outcome. The LASSO
proceeds by adding a penalty term to the coefficients and minimizing a regularized version of
least squares:

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝛽0 −
𝑚

∑
𝑗=𝑖

𝛽𝑗𝑋𝑖𝑗)2 + 𝜆
𝑚

∑
𝑗=1

|𝛽𝑗|

where 𝜆 > 0 is a tuning parameter that will be separately determined which will minimizing
10-fold CV MSE.

Shrinkage - Adaptvie Lasso

In the article Zou (2006), Hui Zou demonstrates that the Lasso sometimes exhibits inconsistent
variable selection, including noise variables. He illustrates that incorporating weights on the
penalty term for each variable, known as the adaptive Lasso, can yield a more stable model
compared to the standard Lasso method.
The adaptive Lasso estimates 𝛽 by minimizing

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝛽0 −
𝑚

∑
𝑗=𝑖

𝛽𝑗𝑋𝑖𝑗)2 + 𝜆𝑛
𝑚

∑
𝑗=1

1
𝑤𝑗

|𝛽𝑗|

where 𝑤𝑗 = | ̂𝛽𝑂𝐿𝑆| and 𝜆𝑛 is also determined by minimizing 10-fold CV MSE.

Experience-based - Selecting 5 Correct and 5 Incorrect Covariates

In practice, some researchers often select confounders relying on their experience, opting for
variables that are more interpretable. However, this approach does not guarantee the inclusion
of all true confounders. To assess the MSE and potential bias associated with the selection of
incorrect covariates, we will randomly choose 5 true covariates and 5 incorrect covariates for
use in the propensity model across all simulation scenarios.

T-test - Naive ATE estiamtor

In practice, some preliminary analyses will take the difference in average of obsrbed outcomes
between the two groups without adjusting for confounding. It is a known established fact that
this leads to a biased treatment effect estimation. We can also consider this method a ‘null’
variable selection, i.e. a method that performs no vairbale selection, and therefore does not
perform any adjustment for existing confounders.

Together with the ‘Oracle’ and ‘Experience Based’ methods, these three form a set of bench-
marking methods. We will compare the performance of data driven methods with benchmark-
ing methods in this study.
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Table 1: Variable Selection Methods Considered for Analysis.

Methods Short Description
Oracle Model with perfect information, only all true covariates.
No Variable
Selection (T-test
ATE Estimation)

Testing covariates on treatment outcome to see which have a significan
association

Experience Based Selecting 5 correct and 5 randomly chosen predictors from the set of
unrelated covariates

Adaptive Lasso A regularization method of LASSO by avoiding overfitting with
penalizing large coefficients

Lasso Adds a penalty term to the coefficients and minimizing a penalized
version of least squares where lambda > 0

Forward Selection Beginning with a null model, adding covariates that have a significant
association treatment outcome one at a time.

Results

In this section, we analyze the outcomes of simulated data replications through a comprehen-
sive examination utilizing data summaries and regression methodologies. We focus on IPW
estimator that employs a propensity score model and weighted sample mean differences. Ini-
tially, we employ graphical tools to assess the results and compare variable selection techniques
with more naive methods for estimating Average Treatment Effects (ATE). Subsequently, our
investigation delves into the evaluation of Mean Squared Error (MSE) across varying simu-
lation parameters and diverse variable selection methods. Our objective is to quantify the
marginal effects of different conditions on MSE, identifying a variable selection approach that
consistently achieves the lowest MSE. We adopt a Gaussian General Linear Regression Model
with an identity link function, incorporating a natural logarithm transformation of Squared
Errors to derive main and interaction effects in terms of percentage changes.

Simulation Results

Figure 1 illustrates and Mean Squared Error (MSE) for the various variable selection methods
across varying model complexity scenarios. With growing number of true predictors,even
simple linear additive models become complex. We expect that the task of constructing a
regression model in such cases is a difficult task, which leads to potential of hugher bias, higher
variance, or a steep trade off between the two. We introduced the two-sample t-test estimator
as a benchmark for unadjusted Average Treatment Effect (ATE) estimation. It is acknowledged
that neglecting confounders can lead to biased estimation, a fact visually confirmed in Figure 1.
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Similarly, the ‘Experience-Based’ variable selection method yields estimates with high MSE,
which is likely due to bias. Recall that the ‘Experience-Based’ method consistently selects five
true and five random confounders, which leads to violation of ‘No Unmeasured Confounders’
assumption.

Conversely, the MSE associated with data-driven variable selection algorithms is relatively
small. We verified that on average the average range of bias associated with data-driven
methods is acceptable. Therefore, MSE is mostly comprised of variance of the estimator. This
observation holds across different data generation scenarios.
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Figure 1: Mean Squared Error (MSE) directly from simulation results. Presented averages
unadjusted for other potential factors explaining variations in MSE

Figure 1 shows that all data-driven methods exhibit a noticeable increase in MSE as the
number of true confounders that need to be accounted for rises. We speculate that the rise in
MSE and variance is a consequence of model misspecification.

Our speculation stems from the understanding that, under random sampling variability, it
becomes increasingly challenging to select all true confounders as their number increases. No-
tably, for the Inverse Probability Weighting (IPW) class of Average Treatment Effect (ATE)
estimators, model misspecification leads to higher variation in the estimator. The impact of
this phenomenon is illustrated in the right graph in Figure 1.

In unadjusted comparisons, outcome adaptive lasso regression demonstrates behavior that,
on average, closely approximates the performance of the ‘Oracle’ method in situations with
a limited number of true covariates. Furthermore, both lasso and forward variable selection
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methods exhibit nearly identical performance, and their effectiveness diminishes as the num-
ber of available variables for selection increases. This pattern persists even as the number
of true confounders grows. However, as the complexity of the scenarios increases, all meth-
ods gradually converge to more similar results in terms of the attained Mean Squared Error
(MSE).
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Inlusion of True and False Predictors into Propensity Score Models 

Figure 2: % True and False predictors calculated based of the number of true predictors. Values
over 100% imply that the number of false predicotrs selected exceeds the number of
true covariates

To assess the ability of each variable selection method to accurately specify the model, we
examine the average proportion of true confounders selected and the average proportion of
all predictors identified by the method in relation to the total number of true confounders.
Figure 2 illustrates that, on average, all data-driven variable selection methods select ap-
proximately 75% to 85% of true confounders under varying data generation and sample size
conditions. This higher percentage of correctly identified confounders is likely the primary
factor contributing to low bias performance across all data generating scenarios. Notably, a
steady deviation from this overall pattern is observed, indicating a consistent decrease in the
number of true confounders as the number of options increases.

Conversely, Figure 2 also demonstrates that all data driven methods on average pick up big
number of false positive covariates, likely due to sampling randomness. For example, when
the number of true predictors is equal to 10, Lasso tends to pick up about 25 false positive
predictors (i.e. 25 false positive / 10 true predictors = 250%). Additionally, on average, as
the size of the true confounder space expands, the ratio of all selected covariates to the num-
ber of true confounders decreases for every method. Presumably, when the number of true
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confounders is small, each additional irrelevant predictor added to the model has a more sub-
stantial impact on this proportion. The likelihood of selecting a false positive predictor in the
model-building process is expected to increase when the number of true confounders is small,
driven by sampling variability.

Main Effects

We employ a Gaussian General Linear Model with an identity link and a natural logarithm
transformation of each squared error to derive marginal effects of the factors described in
the previous section. Table 2 presents the effects of simulation parameters, variable selection
results, and variable selection methods as the percent change in MSE.

Main effects of variable selection methods have limited significance in the context of our re-
gression study. We have uncovered strong and suggestive evidence that the impact of variable
selection methods on the percentage change in MSE varies with the number of true confounders.
Therefore, we present the main effects of variable selection methods for scenarios where the
number of true confounders is equal to zero, which is inherently meaningless. Instead, we focus
on the effect of variable selection methods on MSE when compared with the best-case scenario
(Oracle method) under varying numbers of true confounders. Detailed results are presented in
Figure 3. Additionally, we provide a more nuanced exploration of variable selection method
performance under different conditions in Figure 4 and Figure 5. These figures offer deeper
insights into the effects based on varying simulation parameters and different numbers of true
confounders.

We assessed the marginal effect of an increase in the number of true covariates, considering the
size of the true confounder space as a factor measuring the difficulty of the model-building and
variable selection task. Our estimation indicates that, with each additional true confounder,
the average Mean Squared Error (MSE) is expected to increase by 4.6% (95% CI: -0.32% to
9.73%), after adjusting for other variables. While this result shows a strong suggestive trend
(P = 0.067), it falls short of significance at the considered level of 𝛼 = 0.05. Additionally, we
acknowledge a potential limitation; as the number of true predictors extends beyond 30, these
findings may not be generalizable. A more in-depth discussion on these nuances is provided
in the subsequent discussion section.

Figure 3 shows the effect of varaible selection method on MSE, and contrasted with the Oracle
method. It is expected that the Oracle method will correctly specity the model at all times
and therefore variance of an IPW esimator will only depend on the sampling variablity. As
expected, this estimator has the lowest MSE through lowest bias and variance because model
misspecificiation does not occur.

Table 2 provides expected percentage increase in MSE for each varaible selection mehtod under
different data generating schemes, after adjsting for other variables, while Figure 3 compares
and contrast expected MSE under our regression model for every variable selection method
and true confounder space size.
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Table 2: Gaussian GLM with log-transformed resposnse effect estiamtes. Coefficients are ex-
ponentiated and present the effect as % change

Predictor Estimate 95% CI P-value P<0.05

Variable Selection Methods

Adaptive Lasso -1.3% ( -29.44 % , 38.09 % ) 0.9395

Lasso 72.3% ( 19.7 % , 148.02 % ) 0.0034 *

Forward Variable Selection 52.6% ( 7.36 % , 116.96 % ) 0.0185 *

Experience Based Selection 8.6% ( -39.87 % , 96.04 % ) 0.7850

Other Main Effects

Total Covaraites Available -1% ( -1.07 % , -0.89 % ) 0.0000 *

Sample Size -2.1% ( -4.21 % , -0.01 % ) 0.0485 *

Number of True Confounders 4.6% ( -0.32 % , 9.73 % ) 0.0672

% True Confounders Selected -34.9% ( -71.91 % , 51.03 % ) 0.3177

% Total Covariates Selected -5.1% ( -13.59 % , 4.28 % ) 0.2772

Intercation Terms

Number of True Confounders *
Adaptive Lasso

0% ( -1.53 % , 1.5 % ) 0.9697

Number of True Confounders * Lasso -1.8% ( -3.27 % , -0.35 % ) 0.0152 *

Number of True Confounders *
Forward Variable Selection

-1.2% ( -2.85 % , 0.5 % ) 0.1655

Number of True Confounders *
Experience Based Selection

3.4% ( -0.43 % , 7.42 % ) 0.0822

Number of True Confounders * % True
Confounders Selected

3.3% ( -1.44 % , 8.31 % ) 0.1751

a Regression model explains 10.26% of variation in Squared Errors of IPW estimator

a Variable selection methods are compared with the refernce ’Oracle’ level
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Overall, Figure 3 shows that in situations with a low number of true predictors, Oracle-based
and Outcome Adaptive Lasso produce IPW estimators with similar MSE, which is also the
lowest possible under our data-generating specifications. Lasso regression and Forward Vari-
able Selection methods yield IPW estimators with higher MSE, as evidenced by mostly non-
overlapping confidence intervals. In a situation with a low number of true covariates, the
‘Experience-Based’ method of variable selection results in the highest amount of MSE, al-
though not significantly different from Lasso and Forward Selection approaches.

As we increase the number of true covariates and make the task of model building via variable
selection more challenging, we observe that all data-driven methods produce estimators that
converge to the same value of MSE, while the ‘Experience-Based’ approach tends to perform
worse as the number of true covariates grows. While this finding was not expected, a possible
explanation could be considered in the context of the bias-variance trade-off, which is discussed
in detail in the subsequent discussion section.
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Figure 3: Marginal effect of variable selection method on MSE

The last phase of our analysis assesses the influence of the proportion of correctly identified
confounders and false-positive covariates on Mean Squared Error (MSE) for each employed
method. The consideration of statistically significant interactions prompts a detailed presenta-
tion of results for varying sizes of the true covariate space. Figure 4 incorporates key insights
from Figure 3. In scenarios where the number of true confounders to capture is low, all
methods yield estimators with comparable MSE. Furthermore, with an increase in the capture
of true covariates, a marginal reduction in MSE is observed, though not statistically signif-
icant. However, as the size of the true confounder space expands, capturing an additional
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percentage of covariates results in higher MSE. We posit that the complexity of data generat-
ing mechanisms necessitates the specification of intricate models, inevitably introducing bias,
which contributes to increased MSE. Detailed discussions on these findings are provided in the
subsequent section.
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Figure 4: Effects of variable selection models are given for scenarios with 10, 20, and 30 true
confounders

Figure 3 also includes broad confidence bands for estimated effect lines, particularly noteworthy
when the true number of confounders is 30. An examination of the data summary reveals few
instances where the true number of predictors was below 50%. The preceding Figure 2 indicates
that, on average, 75% to 85% of true covariates were captured. Estimating and interpreting
effects in scenarios with sparse data presentation lead to inherently uncertain results. Please
note that some estiamted effects might not have actual reflection in the data. Oravle variable
selction method always identifies 100% of corerct covariates. We use our regression model to
estiamte expected MSE for the Oracle variable selection method at values lesser than 100% to
enable comparison of this benchmark method with other variable seelction methods.

Furthermore, we explore the impact of the proportion of all selected covariates on the number
of true confounders. Detailed results are presented in Figure 5 in the appendix.

Discussion

Our comprehensive investigation into the variable selection method for the Inverse Probability
Weighting (IPW) propensity score model yielded both anticipated and unforeseen results. The
primary objective of this study was to identify a method that yields a model with minimal
degrees of misspecification. Our hypothesis posited that the least degree of misspecification
would result in reduced variance and more precise estimators. The results section, however,
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demonstrates that the answer to this question is contingent upon underlying parameters, in-
cluding sample size and the complexity of the true model.

In our exploration, we revealed that, for a category of simpler additive logistic regression
models, the adaptive lasso regression model consistently produces estimators with the lowest
Mean Squared Error (MSE) across various data-generating and data-collection scenarios. It
is crucial to note, however, that the true model is inherently unknown to researchers and
analysts.

Consequently, based on the insights derived from this study, we advocate for the adoption of an
adaptive lasso regression model for the IPW estimator by practicing statisticians. While the
comparison with more flexible modeling techniques remains an open question, particularly in
situations where interpretable models are preferred, the adaptive lasso consistently outperforms
other methods across all unidentified data-generating scenarios considered in our study.

In instances where the underlying model is complex (with 30 true predictors), all data-driven
methods exhibit similar results, and the choice of the variable selection model has minimal
impact. However, when the number of true predictors is limited, and the inclusion of each
additional false positive incurs a high cost, the selection of the variable selection method
becomes pivotal.

It is imperative to reiterate that the true number of predictors in the underlying data-
generating model remains unknown. Therefore, our strong recommendation is to employ
an adaptive lasso model for variable selection, ensuring optimal performance of the IPW
estimator in terms of minimizing MSE when compared to Lasso and Forward selection
models.

Our investigation also delved into the influence of both true and false predictors on Mean
Squared Error (MSE), visualizing these effects through graphical tools in Figure 4 and Figure 5,
considering interactions and complex relationships. Surprisingly, as the percentage of true
covariates selected by each method increased, we observed a concurrent increase in MSE. Our
speculation is that augmenting model complexity leads to higher variance in the estimator
associated with this model.

In contrast, Figure 5 in the appendix demonstrates that the marginal impact of including false
positive covariates results in no discernible change in the MSE of the estimator. These findings
may offer reassurance to practicing statisticians, indicating that the ‘penalty’ for the inclusion
of false positive predictors appears to be absent. The emphasis lies solely on the presence of
true positive predictors in the model.

Given that MSE encompasses both the variance and bias of the estimator, it is plausible that
a model with a high number of predictors, achieved by maintaining the percentage of false
positive predictors at around 150%, may exhibit low average bias due to the incorporation of
numerous potential confounders. However, such a model is likely to possess a high degree of
variance in the estimates it produces.
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While our current analysis does not empower us to conduct a causal analysis, future studies
could leverage these preliminary results to perform a more in-depth examination. Subsequent
simulation studies may experiment with varying proportions of true positive and false positive
predictors while keeping other data-generating parameters constant. This could help evaluate
whether the rate of change in MSE worsens compared to the results we presented.

It appears that the inevitable increase in MSE as the number of predictors grows can be
mitigated, and our best approach may be to minimize the rate at which MSE increases with the
inclusion of more predictors. Such a finding could empower practicing analysts, providing them
with a deeper understanding of how their modeling choices impact subsequent inferences.

Conclusion

In this study, we assessed the impact of variable selection methods on the construction of
Inverse Probability Weighting (IPW) Average Treatment Effect Estimators within the propen-
sity score model. Our evaluation encompassed diverse data-generating scenarios designed to
emulate real-world datasets commonly used by researchers and practitioners. The focal points
of interest included the number of true predictors in the data-generating mechanism and the
variable selection method.

On average, our results revealed that all data-driven methods tend to capture approximately
75% of true confounders while incorporating around 150% of false positive confounders. Utiliz-
ing these findings, data-generating conditions, and variable selection methods, we constructed
a Gaussian General Linear Model to investigate the impact of these factors on Squared Errors
on the logarithmic scale. Our analysis indicated that MSE increases as models become more
complex, prompting us to recommend further studies to evaluate whether the rate of MSE
growth can be controlled using different methods or if it is an inevitable effect that can only
be minimized.

A key discovery from our study was that the Adaptive Lasso regression model, which selects
variables based on shrinkage parameters, outperforms all other data-driven variable selection
methods across both known and unknown data-generating schemes. However, in scenarios
with numerous confounders, all data-driven methods tend to exhibit similar performance, con-
verging to the best-case scenario on average. Our advocacy rests on the suggestion that, in
situations where interpretable regression models are preferred, practitioners should opt for
Adaptive Lasso regression for robust model building.
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Appendix

Supplemental Figures
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Figure 5: Effects of variable selection models are given for scenarios with 10, 20, and 30 true
confounders

Table 3: Mean Squared Error of Adjusted Treatment Effect for Select Propensity Score Vari-
able Selection Methods

Propensity Score Stratification Inverse Probability Weighting
95% CI 95% CI

Method Bias MSE SE Lower Upper Bias MSE SE Lower Upper
Oracle 0.0037 0.0000841 0.116 0.974 1.430 -0.0078 0.0000921 0.131 0.933 1.447
Adaptive Lasso 0.0042 0.0000845 0.129 0.942 1.448 -0.0014 0.0000857 0.107 0.980 1.399
Lasso 0.0107 0.0001039 0.134 0.981 1.506 0.0019 0.0001062 0.125 0.990 1.479
Forward Selection 0.0130 0.0001044 0.135 0.981 1.510 0.0052 0.0001131 0.154 0.935 1.540
Experience Based 0.0724 0.0001516 0.115 1.038 1.489 0.0642 0.0001525 0.115 1.029 1.481
T-test 0.0711 0.0002287 0.130 1.049 1.558 0.0711 0.0002287 - - -
a Average value of 500 simulated combinations of each combination of sample size (1500, 3000, 4500, 6000), potential covariates
(50, 100, 150), and true covariates (10, 20, 30)
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Table 4: Mean Squared Error of Adjusted Treatment Effect for Select Propensity Score Vari-
able Selection Methods

95% CI 95% CI
Propensity Score Stratification Inverse Probability Weighting

Method n Bias MSE SE Lower Upper Bias MSE SE Lower Upper
Oracle 1500 0.0104 0.0001684 0.174 0.863 1.544 0.0024 0.0001913 0.194 0.815 1.576
Oracle 3000 0.0098 0.0000734 0.111 0.942 1.377 -0.0139 0.0000776 0.123 0.895 1.377
Oracle 4500 0.0178 0.0000509 0.095 1.047 1.421 -0.0070 0.0000541 0.110 0.994 1.424
Oracle 6000 -0.0232 0.0000438 0.085 1.043 1.377 -0.0128 0.0000456 0.097 1.030 1.411
Adaptive Lasso 1500 0.0227 0.0001544 0.189 0.839 1.579 0.0277 0.0001563 0.153 0.915 1.514
Adaptive Lasso 3000 0.0004 0.0000957 0.135 0.953 1.483 -0.0073 0.0000971 0.112 0.990 1.430
Adaptive Lasso 4500 0.0034 0.0000398 0.101 0.959 1.353 -0.0111 0.0000417 0.082 0.981 1.303
Adaptive Lasso 6000 -0.0099 0.0000479 0.092 1.016 1.378 -0.0147 0.0000477 0.080 1.036 1.348
Lasso 1500 0.0431 0.0001930 0.201 0.872 1.659 -0.0063 0.0002021 0.174 0.876 1.557
Lasso 3000 -0.0009 0.0000950 0.128 0.955 1.455 0.0253 0.0000931 0.121 0.994 1.468
Lasso 4500 -0.0146 0.0000528 0.102 1.037 1.435 -0.0185 0.0000531 0.099 1.038 1.427
Lasso 6000 0.0177 0.0000602 0.091 1.100 1.457 0.0093 0.0000614 0.094 1.085 1.455
Forward Selection 1500 0.0319 0.0001948 0.200 0.862 1.647 0.0461 0.0002144 0.232 0.814 1.723
Forward Selection 3000 0.0108 0.0000953 0.130 0.963 1.471 -0.0249 0.0001013 0.146 0.894 1.468
Forward Selection 4500 -0.0093 0.0000527 0.103 1.040 1.443 -0.0086 0.0000561 0.117 1.013 1.472
Forward Selection 6000 0.0214 0.0000600 0.092 1.102 1.463 0.0096 0.0000642 0.106 1.063 1.478
Experience Based 1500 0.1115 0.0002844 0.162 0.980 1.616 0.1030 0.0002876 0.162 0.971 1.607
Experience Based 3000 0.0750 0.0001635 0.122 1.054 1.531 0.0667 0.0001626 0.122 1.045 1.523
Experience Based 4500 0.1517 0.0000624 0.090 1.128 1.481 0.1403 0.0000636 0.090 1.116 1.470
Experience Based 6000 -0.0485 0.0000963 0.086 0.990 1.327 -0.0530 0.0000964 0.086 0.984 1.323
T-test 1500 -0.0985 0.0005785 0.182 0.768 1.480 -0.0985 0.0005785 - - -
T-test 3000 0.2929 0.0001287 0.128 1.249 1.749 0.2929 0.0001287 - - -
T-test 4500 0.0038 0.0000815 0.105 1.049 1.459 0.0038 0.0000815 - - -
T-test 6000 0.0940 0.0000747 0.094 1.171 1.538 0.0940 0.0000747 - - -
a Average value of 500 simulated combinations of each combination of potential covariates (50, 100, 150), and true covariates (10, 20, 30)
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